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Abstract

Studies over the past 25 years have shown that measurements of surface reflectance and temperature (termed optical remote sensing) are

useful for monitoring crop and soil conditions. Far less attention has been given to the use of radar imagery, even though synthetic aperture

radar (SAR) systems have the advantages of cloud penetration, all-weather coverage, high spatial resolution, day/night acquisitions, and

signal independence of the solar illumination angle. In this study, we obtained coincident optical and SAR images of an agricultural area to

investigate the use of SAR imagery for farm management. The optical and SAR data were normalized to indices ranging from 0 to 1 based on

the meteorological conditions and sun/sensor geometry for each date to allow temporal analysis. Using optical images to interpret the

response of SAR backscatter (so) to soil and plant conditions, we found that SAR so was sensitive to variations in field tillage, surface soil

moisture, vegetation density, and plant litter. In an investigation of the relation between SAR so and soil surface roughness, the optical data

were used for two purposes: (1) to filter the SAR images to eliminate fields with substantial vegetation cover and/or high surface soil

moisture conditions, and (2) to evaluate the results of the investigation. For dry, bare soil fields, there was a significant correlation (r2=.67)

between normalized SAR so and near-infrared (NIR) reflectance, due to the sensitivity of both measurements to surface roughness.

Recognizing the limitations of optical remote sensing data due to cloud interference and atmospheric attenuation, the findings of this study

encourage further studies of SAR imagery for crop and soil assessment. D 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

At this time, there are about 10 earth-observation

satellites supporting optical sensors with the spatial, spec-

tral, and temporal resolutions suitable for many farm

management applications (Moran, Inoue, & Barnes,

1997). These optical sensors provide information in the

reflective and thermal emissive portions of the electro-

magnetic spectrum. In a multitude of studies, this informa-

tion has been used for such important farm applications as

scheduling irrigations, predicting crop yields, and detect-

ing certain plant diseases and insect infestations (see

review by Hatfield & Pinter, 1993). Although optical

remote sensing is a powerful farm management tool, there

are some serious limitations that have restricted farm

management applications. For example, acquisitions are

limited to cloud-free sky conditions, the signal is attenu-

ated by the atmosphere, and image interpretation is a

complex function of the sun/sensor/target geometry. An

alternative to the use of optical remote sensing for farm

management is the use of radar backscattering data

obtained from synthetic aperture radar (SAR) sensors.

There are currently four SAR sensors aboard polar-orbit-

ing satellites, and there are plans for at least two more in

the near future.

SAR sensors measure the spatial distribution of surface

reflectivity in the microwave spectrum. The radar transmits

a pulse and then measures the time delay and strength of

the reflected echo (i.e., phase and amplitude measure-

ments), where the ratio of scattered and incident microwave

energy is termed the radar backscatter (so). The scattering

behavior of the SAR signal is governed by the dielectric

properties of both soil and vegetation, and the geometric
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configuration of the scattering elements (soil roughness,

leaves, stalks, and fruit) with respect to the wavelength,

direction, and polarization of the incident wave. SAR

systems have the advantages of cloud penetration, all-

weather coverage, high spatial resolution, day/night acquis-

itions, and signal independence of the solar illumination

angle. These advantages allow SAR images to meet the

rigid data requirements involved with farm management

decisions. Furthermore, for agricultural applications, the

inherent complexity of SAR interpretation is countered by

the a priori information generally available from farm

managers, such as cultivation practices, crop type, planting

date, row direction, soil type, and topography (particularly

with leveled or terraced fields).

The greatest weakness of SAR data for farm management

is the poor understanding of the response of SAR so to

agricultural soil and plant conditions. Research in the optical

region has benefited from three factors: (1) the Large Area

Crop Inventory Experiment (LACIE) and AgRISTARS

programs, (2) availability of inexpensive, handheld optical

sensors, and (3) access to reliable optical images from

orbiting sensors, particularly Landsat Thematic Mapper

(TM) and SPOT HRV. The LACIE and AgRISTARS pro-

grams defined the physics of relations between optical

measurements and biophysical properties of crop canopies

and soils (e.g., MacDonald & Hall, 1980). These pioneering

programs established the potential of optical remote sensing

for crop management, and inspired many studies of agricul-

tural remote sensing. Subsequent studies advanced the

science based on easy and often-inexpensive access to

optical data obtained with handheld, airborne, or satellite-

based sensors. SAR research has not had such advantages.

First, there has not been a research effort of the magnitude

of the LACIE and AgRISTARS Programs. Second, there are

no commercially available, inexpensive, ground- or aircraft-

based SAR sensors for intensive field experiments. Third,

until 1990, there have been no SAR sensors aboard polar-

orbiting satellites. Ultimately, these limitations make field

studies of SAR applications for agricultural management

very difficult at best.

Despite such difficulties, there have been multiple

studies of SAR data for monitoring crop growth and

development (e.g., Moran, Vidal, et al., 1997; Taconet

et al., 1994; Ulaby, Allen, Eger, & Kanemasu, 1984).

The best results have been obtained when SAR measure-

ments are interpreted with reference to physical models

that describe radar backscatter from crops and soils, such

as the water cloud model (Attema & Ulaby, 1978), the

Integrated Equation Model (IEM) (Fung, Li, & Chen,

1992; Oh, Sarabandi, & Ulaby, 1992), and the Michigan

microwave canopy scattering (MIMICS) model (Ulaby,

Sarabandi, McDonald, White, & Dobson, 1990). Such

models have been inverted to determine important agricul-

tural variables such as crop green leaf area index (GLAI)

and surface soil moisture (e.g., Altese, Bolognani, Man-

cini, & Troch, 1996; Sano, Moran, Huete, & Miura, 1998).

However, the utility of the models has been limited by

several factors. Empirical models, such as the water cloud

model, require some model inputs that are unrelated to

measurable physical quantities, and thus, must be cali-

brated based on model inversion with a large set of

frequent SAR measurements. The IEM is only applicable

to bare soils, and requires inputs that are difficult to

measure at regional scales, such as surface roughness

and surface soil moisture. The MIMICS model is a

powerful tool for investigating the response of the SAR

signal to plant and soil conditions, but like IEM, it is

difficult to apply on a regional scale due to the require-

ment for multiple on-site measurements of soil and plant

conditions. To avoid problems associated with measuring

model inputs, crop growth and water balance models have

been used to calculate the driving variables for the scatter-

ing models, such as the amount of water in the canopy and

in the soil surface (e.g., Bouman, van Kraalingen, Stol, &

van Leeuwen, 1999). The latter approach has some poten-

tial for agricultural application, but it requires a multitude

of model inputs and the overall accuracy is dependent

upon the accuracies of the three models.

This complexity and uncertainty of modeling approaches

have spurred interest in the use of SAR/optical data synergy

to combine the strengths of optical and SAR remote sensing

to improve our ability to monitor agricultural resources. In

the study presented here, we attempted to capitalize on the

understanding of the response of the optical data to plant/

soil conditions in order to interpret SAR images of an

agricultural region. For four dates in 1995 through 1997,

we acquired pairs of images from the Landsat TM sensor

and the ERS-2 SAR sensor (Table 1) covering the Univer-

sity of Arizona Maricopa Agricultural Center (MAC) in

central Arizona. TM measurements of multispectral reflec-

tance (r) and temperature (Ts) measurements were used to

interpret the ERS-2 C-band SAR backscatter (so). In par-

ticular, we focused on the determination of within-field

variations in

� soil roughness (related to tillage, subsidence, and

erosion);

Table 1

Optical and radar sensor specifications for sensors used in the ASOS

Sensor Spectral bands Other specifications

Landsat-5 TM Blue: 0.45–0.52 mm Spatial resolution:

Green: 0.52–0.60 mm 30 m (visible, NIR, SWIR)

Red: 0.63–0.69 mm 120 m (thermal IR)

NIR: 0.76–0.90 mm Overpass time:

SWIR: 1.55–1.75 mm � 10:30 am MST

SWIR: 2.08–2.35 mm
Thermal: 10.4–12.5 mm

ERS-2 SAR C band: 5.3 Ghz 4-looks format from ESA

Polarization: VV Spatial resolution: 25 m

Pixel spacing: 12.5 m

Incidence angle: 23�
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� vegetation density (related to seeding, crop vigor, and

pest infestations);
� surface soil moisture condition (related to monitoring

irrigation efficacy and soil texture); and
� plant litter (related to erosion control).

Based on the complementary responses of optical and

SAR signals to such soil/plant conditions, the sensitivity of

SAR backscatter to surface roughness conditions was

studied using a combined analysis of SAR and optical

images. This work consisted of four processing steps. First,

the spectral data were normalized to indices ranging from 0

to 1 based on the meteorological conditions and sun/sensor

geometry for each date. Second, normalized surface re-

flectances in the red and near-infrared (NIR) reflectance

wavelengths were used to discriminate vegetated and non-

vegetated targets. Third, for nonvegetated targets, the nor-

malized surface temperature was used to discriminate soil

surfaces that were wet from those that were dry. Finally, for

all nonvegetated, dry soil targets, the normalized SAR back-

scatter was related to the surface soil roughness based on a

comparison with normalized NIR reflectance. This four-step

approach is an example of the general idea that combining

optical and SAR images will allow investigations that would

not otherwise be possible with either image alone.

2. Background and theory

In the reflective region of the optical spectrum, discrim-

ination of crop growth and plant status is generally accomp-

lished by assessing the reflectance of red and NIR

reflectance (rRed and rNIR, respectively) of the plant canopy.
Simply put, plants absorb red radiation and scatter NIR

radiation resulting in a large difference between rNIR and

rRed; in contrast, for bare soil, rNIR� rRed. This difference

between plant and soil reflectances is often enhanced by

computing a ratio of visible and NIR reflectances, termed a

vegetation index (VI). A commonly used VI is the soil

adjusted vegetation index

SAVI ¼ ðrNIR � rRedÞ=ðrNIR þ rRed þ LÞð1þ LÞ; ð1Þ

where L is a unitless constant assumed to be 0.5 for a wide

variety of leaf area index values (Huete, 1988). SAVI has

been found to be sensitive to such vegetation parameters as

GLAI, fraction absorbed photosynthetically active radiation,

and percent of the ground surface covered by green

vegetation (Jackson & Huete, 1991).

In the thermal region, remotely sensed measurements of

soil and foliage temperature have been linked to soil

moisture content, plant water stress, and plant transpiration

rate (e.g., Norman, Divakarla, & Goel, 1995). The sensitiv-

ity of surface temperature to plant and soil moisture con-

ditions is related primarily to the heat loss associated with

evaporation and transpiration. As such, the thermal signal is

related to the percentage of the site covered by green

vegetation and the water status of the vegetation and soil

(i.e., EvapoTranspiration or ET).

In the microwave region, specifically the C-band SAR

wavelength (l= 6 cm), it is generally assumed that so is

directly related to surface roughness, soil moisture, and

vegetation density. This can be expressed by the water

cloud model, in which the power backscattered by the

whole canopy so is the sum of the contribution of the

vegetation sv
o, and that of the underlying soil ss

o. The latter

is attenuated by the vegetation layer as a function of t2, the
two-way attenuation through the canopy. Thus,

so ¼ sov þ t2sos ; ð2Þ

where t2 is a function of GLAI, sv
o is a function of t2 and

GLAI, and ss
o is a function of volumetric soil moisture

content (hv) and surface roughness (Prevot, Champion, &

Guyot, 1993; Ulaby et al., 1984).

It is apparent from this short discussion that there is a

relation between both the optical and SAR sensitivities to

variations in soil surface roughness, vegetation density, and

soil moisture (Table 2). Theoretically, as the surface rough-

ness increases, so increases due to increased SAR scattering,

rRed and rNIR decrease due to increased surface shadows,

and Ts and SAVI remain relatively unchanged (though slight

changes in both could be expected with increased surface

shadows). As crop cover decreases, so generally increases

due to an increase in t2 and a decrease in the attenuation of

the soil backscatter (note that when sv
o{ss

o, it is possible

for so to decrease with decreasing vegetation). Associated

with decreases in crop cover, Ts increases due to decreased

transpiration rate and increased radiation from the soil

surface, rRed increases due to decreased leaf chlorophyll,

rNIR decreases due to decreased leaf scattering, and the

SAVI decreases dramatically. As surface soil moisture

increases, so increases due to a change in the soil dielectric

constant, Ts decreases due to increased evaporation rate, rRed
and rNIR decrease due to water absorption, and the SAVI

remains relatively unchanged. As bright, dry plant litter

increases, so increases due to an increase in the underlying

soil moisture, Ts and SAVI remain relatively unchanged, and

rRed and rNIR both increase because litter is more reflective

than the soil background.

Table 2

Theoretical response of optical and SAR measurements to changes in plant/

soil condition, where " indicates an increase, # indicates a decrease, and –

indicates no substantial change

Change in plant/soil condition so Ts rRed rNIR SAVI

Increase in surface roughness " – # # –

Decrease in green vegetation biomass " " " # #
Increase in surface soil moisture content " # # # –

Increase in plant litter " – " " –

so is backscatter, Ts is surface temperature, rRed and rNIR are surface

reflectance in the Red and NIR spectrum, and SAVI is the soil adjusted

vegetation index.
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3. Experiment

The site of the Agricultural SAR/Optical Study (ASOS)

was the University of Arizona MAC. MAC is a 770 ha

research and demonstration farm located about 48 km south

of Phoenix. The demonstration farm is composed of large

fields (up to 0.27� 1.6 km) in which alfalfa is grown year-

round, cotton is grown during the summer, and wheat is

grown during the winter. A data management system is in

place to archive planting, harvesting, and tillage informa-

tion, and the times and amounts of water, herbicide, and

pesticide applications. Since the predominant irrigation

method for the MAC demonstration farm is flooding, each

field is dissected into level-basin ‘‘borders.’’

ASOS was conducted in two parts. A retrospective study

was conducted based on existing images in the European

Space Agency (ESA) and EROS Data Center (EDC)

archives. These images from 1995 and 1996 were ordered

with the intent of determining field soil moisture, vegetation

cover, tillage, and plant litter conditions based on the

response of the optical and SAR signals, and validating these

determinations with the field notes archived by the MAC

Farm Manager. A second study was conducted in which we

ordered TM/SAR image pairs for three dates (May, June, and

July) in 1997. During all three overpasses, we arranged for

one field to be flood-irrigated such that a large portion of the

field was saturated, and, for contrast, a large portion was

completely dry. A kenaf crop was planted in May, and by the

June overpass dates, the GLAI was 0.3; by the July overpass,

the GLAI was 1.5. We also monitored vegetation and soil

moisture conditions in two fields of alfalfa at various growth

stages with a variety of soil moisture conditions.

During each TM/SAR overpass in 1997, we made � 50

gravimetric measurements of soil moisture content to 5 cm

depth in the dry and wet portions of the fallow field and in

the two alfalfa fields. These were converted to volumetric

soil moisture using estimates of field bulk density. We also

measured GLAI in situ at multiple locations using a LICOR

LAI2000 plant canopy analyzer.

The SAR raw data were averaged to one value for each

field border (a minimum of 100 pixels) to minimize the

speckle effect, and the mean was converted to values of so

according to Moran, Vidal, et al. (1997). The TM data were

also averaged to one value for each field border, and the

means were converted to values of apparent reflectance and

radiometric temperature according to Markham and Barker

(1986) and Moran et al. (1995). The term ‘‘apparent

reflectance’’ refers to reflectance factors derived from sat-

ellite images that have not been corrected for atmospheric

effects. Considering that the TM data were acquired on days

with clear, dry atmospheric conditions, the difference

between apparent and surface reflectance in the red and

NIR wavelengths should be minimal (Turner, Malila,

Nelapka, & Thompson, 1975). Similarly, the radiometric

temperature (Tr) measured by the TM sensor has been found

to be within 1–2�C of surface radiometric temperature for

days with clear, dry atmospheric conditions in central

Arizona (Moran, 1990). Tr measured by the TM sensor

was converted to surface kinetic temperature (Ts) based on

measurements of surface emissivity (e) using the relation

Ts=(Tr
4/e)1/4, where e = 0.98 for dense alfalfa, e = 0.95 for

rough bare soil and recently harvested alfalfa, and e = 0.89

for laser-leveled bare soil (Reginato & Jackson, 1988).

Because there were few TM/SAR pairs available in the

ESA and EDC archives, we were only able to obtain images

for November and December 1995 and December 1996

(Table 3). During this time of year, there was very little farm

activity, and the only crops were alfalfa and emergent wheat.

Though we ordered the ERS-2 SAR and Landsat TM

images for May, June, and July 1997, we only received

one SAR/TM image pair (May 1997; Fig. 1). The reason for

the failure to obtain the images as ordered is still unknown;

however, such acquisition failure is not uncommon for

satellite-based sensors, as reported by Moran (1994).

4. Approach

There are two approaches to SAR/optical data interpreta-

tion that are unique to this study and deserve further

explanation here. One is the process of data normalization

that allowed us to compare optical and SAR spectral

measurements over time and space with common units,

and the second is the approach for retrieval of soil surface

roughness from SAR so using the four-step procedure

mentioned briefly in the Introduction.

4.1. Data normalization

To monitor plant and soil variations either within a field

or between images, we defined a set of normalized indices

that allowed values of so, Ts, rRed, rNIR, and SAVI to be

compared over space and time in values normalized to a

range from 0 to 1. These indices allowed easy assessment of

the optical and SAR responses to changes in plant/soil

condition summarized in Table 2. Data from each image

were converted to a normalized value as

Table 3

ERS-2 SAR and Landsat TM scenes ordered for the 1995–1997 ASOS

ERS-2 SAR Landsat-5 TM Notes

6 Nov. 1995

11 Dec. 1995

30 Dec. 1996

8 Nov. 1995

10 Dec. 1995

28 Dec. 1996

Wheat planted; cotton harvested;

several disked fields; no irrigations

19 May 1997 21 May 1997 Soil moisture study with bare soil

conditions in Field 3

23 June 1997 22 June 1997 Soil moisture study with kenaf

GLAI = 0.3 in Field 3 (SAR scene

not acquired by ESA)

10 July 1997 9 July 1997 Soil moisture study with kenaf

GLAI = 1.5 in Field 3 (Neither the

SAR nor TM scene was acquired)
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s N
o ¼ ðs A

o � s M
o Þ=ðs X

o � s M
o Þ; ð3Þ

TsN ¼ ðTsA � TsMÞ=ðTsX � TsMÞ; ð4Þ

rRed;N ¼ ðrRed;A � rRed;MÞ=ðrRed;X � rRed;MÞ; ð5Þ

rNIR;N ¼ ðrNIR;A � rNIR;MÞ=ðrNIR;X � rNIR;MÞ; ð6Þ

SAVIN ¼ ðSAVIA � SAVIMÞ=ðSAVIX � SAVIMÞ; ð7Þ

where the subscript N indicates that the value has been

normalized, subscript A refers to the actual value, and

subscripts X and M refer to the maximum and minimum

values for that date and time (as described below). For

change detection, e.g., within-field analysis, normalized

difference (DN) indices were computed, where

DNso ¼ s N;1
o � s N;2

o ¼ ðs 1
o � s 2

o Þ=ðs X
o � s M

o Þ; ð8Þ

DNTs ¼ Ts;N;1 � Ts;N;2 ¼ ðTs1 � Ts2Þ=ðTsX � TsMÞ; ð9Þ

DNrRed ¼ rRed;N;1 � rRed;N;2

¼ ðrRed1 � rRed2Þ=ðrRedX � rRedMÞ; ð10Þ

DNrNIR ¼ rNIR;N;1 � rNIR;N;2

¼ ðrNIR1 � rNIR2Þ=ðrNIRX � rNIRMÞ; ð11Þ

DNSAVI ¼ SAVIN;1 � SAVIN;2

¼ ðSAVI1 � SAVI2Þ=ðSAVIX � SAVIMÞ; ð12Þ

where the subscripts 1 and 2 refer to two locations within

the field and DN values range from � 1 to 1.

The minimum and maximum values of so, Ts, rRed,
rNIR, and SAVI were computed as follows. For so, we

assumed that the ERS-2 sensor calibration was accurate

and that so would vary only with surface conditions.

Consequently, it was possible to determine sX
o and sM

o

based solely on the data within the four images; that is,

sX
o was equal to the maximum so for the agricultural

fields in the four images, and similarly, sM
o was equal to

the minimum so. This resulted in sM
o =� 16 and sX

o= + 5.

A similar approach was used for SAVIX and SAVIM.

Considering that the SAVI has already been normalized

for soil differences (Eq. (1)) and that SAVI varies min-

imally with differences in solar zenith angle (Pinter,

Jackson, & Moran, 1990), we set SAVIX equal to the

maximum SAVI for the agricultural fields in the four

images, and SAVIM equal to the minimum SAVI. Thus,

SAVIX = 0.7 and SAVIM = 0.0.

Surface reflectance is highly dependent upon solar zenith

angle (qz) due to variations in the amount of shadow on the

surface (Jacquemoud, Baret, & Hanocq, 1992). This relation

between r and qz can be approximated as a function of

cos(qz) for many vegetated and rough soil surfaces (Dymond

& Qi, 1997). To compute rRed,X, rRed,M, rNIR,X, and rNIR,M,
we first estimated a maximum and minimum reflectance that

Fig. 1. Images of Landsat TM reflectance (left) and ERS-2 SAR backscatter (right) covering MAC acquired on 21 May and 19 May 1997, respectively. The

vector overlay designates the MAC fields, and the total area covers 770 ha.
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The values of maximum and minimum Ts are a

function of the meteorological conditions at the time and

date of overpass based on the Penman–Monteith equation

(Allen, 1986),

lEG ¼ ½DðRn � GÞ þ rCpðVPDÞ=ra
=½Dþ g�
; ð13Þ

where lEG is the latent heat flux (W m� 2), D is the slope of

the saturation vapor pressure–temperature curve (kPa C� 1),

Rn is the net radiation flux at the surface (W m � 2), G is the

sensible heat flux conducted to the soil (W m� 2), r is air

density (kg m � 3), Cp is specific heat at constant pressure

(kJ kg� 1 C� 1), VPD is vapor pressure deficit (kPa), and

the aerodynamic resistance, ra (s m
� 1) is (Eq. (14))

ra ¼ f½lnððz� doÞ=zomÞ þ lnðzom=zohÞ �Fh


�½lnððz� doÞ=zomÞ �Fm
g=k2u; ð14Þ

and u is wind speed (m s� 2), z is the height above the surface

at which u is measured (m), do is the displacement height (m),

zom and zoh are the roughness lengths for momentum and heat

(m), respectively, Fh and Fm are the stability corrections for

heat and momentum, respectively, and k is von Karman’s

constant (� 0.4). The value of g* (kPa C� 1) in Eq. (13) is a

function of ra and the canopy resistance to vapor transport

(rc, s m
� 1), where g* = g(1 + rc/ra).

Jackson, Idso, Reginato, and Pinter (1981) derived an

equation to compute vegetation temperature based on

Eq. (13) and a measure of air temperature. Moran, Clarke,

Inoue, and Vidal (1994) showed that this equation could be

used to compute the minimum and maximum temperatures

(Ts,X and Ts,M) of a bare soil surface. For saturated bare

soil, where rc = 0 (the case of a free water surface),

Ts;M ¼ Ta þ ½raðRn � GÞ=rCp
½g=ðDþ gÞ


� ½VPD=ðDþ gÞ
; ð15Þ

and for dry bare soil, where rc =1 (analogous to complete

stomatal closure),

Ts;X ¼ Ta þ ½raðRn � GÞ=rCp
: ð16Þ

Based on on-site meteorological measurements and the

approaches described by Moran et al. (1994), values of Ts,X

and Ts,M were derived for each of the four Landsat images

using Eqs. (15) and (16) with the following results:

The normalization of the optical data reduced the

influences of variations in meteorological condition and

sun/sensor geometry for each date to allow temporal

analysis. The normalization of the SAR data, as performed

in this study, converted the data into units ranging from 0

to 1, but was not a required transformation for this

temporal analysis.

4.2. Retrieval of soil surface roughness from SAR backscatter

A simple approach was used to retrieve soil surface

roughness from measured SAR backscatter through a series

of steps in which the SAR data were filtered based on

concurrent measurements in optical wavelengths. This

approach was based on the premise that the dominant

influences on SAR backscatter of a given wavelength and

polarization are (1) surface soil moisture, (2) vegetation

density, and (3) surface roughness (Eq. (2)). For dry surfaces

devoid of vegetation, the dominant influence on SAR

backscatter was surface roughness. According to Table 2,

the only surface condition that substantially affected SAVI

was a change in green vegetation biomass. Thus, the SAVI

was used to discriminate vegetated from nonvegetation

targets. Again according to Table 2, for nonvegetated

surfaces, the only surface condition that substantially affec-

ted surface temperature was a change in surface soil

moisture condition. Thus, Ts was used to discriminate bare

soils with wet and dry surface conditions. Using SAVI and

Ts as image filters, it was possible to identify all the pixels in

the SAR image associated with dry, bare soil. Then, accord-

ing to Eq. (2), the dominant influence on the magnitude of

SAR backscatter was surface roughness.

Based on the averages of spectral information retrieved

from each of 260 field borders for all eight Landsat TM and

ERS-2 SAR scenes, the values of Ts,N and SAVIN were used

to eliminate field borders that were vegetated or had wet

surface soil conditions. Data from all borders with

SAVIN > 0.1 and Ts,N < 0.35 were removed from the data

would be measured from shadowless bright and dark soil/plant surfaces, respectively. These minimum and maximum values

were estimated to be 0.02 and 0.8 for the red spectral band, and 0.1 and 0.9 for the NIR spectral band. These ‘‘extreme’’

values were multiplied by cos(qz) for each date, resulting in the following values for each scene:

8 Nov. 1995 qz = 55.4 rRed,X = 0.45 rRed,M = 0.01 rNIR,X = 0.51 rNIR,M = 0.06

10 Dec. 1995 qz = 61.9 rRed,X = 0.38 rRed,M = 0.01 rNIR,X = 0.42 rNIR,M = 0.05

26 Nov. 1996 qz = 59.8 rRed,X = 0.40 rRed,M = 0.01 rNIR,X = 0.45 rNIR,M = 0.05

21 May 1997 qz = 28.4 rRed,X = 0.70 rRed,M = 0.02 rNIR,X = 0.79 rNIR,M = 0.09

8 Nov. 1995 Ts,X = 25.7 Ts,M = 13.7

10 Dec. 1995 Ts,X = 21.6 Ts,M = 11.9

26 Nov. 1996 Ts,X = 25.0 Ts,M = 13.5

21 May 1997 Ts,X = 47.4 Ts,M = 21.6
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set. With these thresholds, the remaining data were from

field borders characterized by dry, bare soils with a variety

of surface roughness conditions. Based on the assumption

that rNIR,N of dry, bare soil surfaces is dominantly influ-

enced by shadowing from roughness elements (Jacquemoud

et al., 1992), a scattergram of sN
o and rNIR,N produced a

strong negative relation for this filtered data set.

5. Results and discussion

Results from the ASOS experiments are presented in

three sections. First, results from the soil moisture and

vegetation study in 1997 are presented; second, DN indices

derived from Eqs. (8)–(12) were used to support the general

trends presented in Table 2; and third, normalized spectral

values (Eqs. (3)–(7)) from all four images were combined to

assess the suitability of SAR imagery to map farm-scale soil

roughness for agricultural resources management.

5.1. ASOS soil moisture experiment 1997

The study conducted in May 1997 was designed to

investigate the sensitivity of SAR and optical data to

differing soil moisture conditions. A large portion of a

fallow field was flood irrigated during the ERS-2 and

Landsat overpasses, and another portion was left dry.

Measurements of SAR so, Ts, rRed, rNIR, and SAVI were

extracted from the SAR and TM scenes for the very wet and

very dry portions of the field. These data confirmed the

theoretical response of SAR and optical data to changes in

surface soil moisture conditions (Fig. 2). That is, for a soil

moisture increase of 35%, the SAR so increased by nearly

8 dB, Ts decreased by 8�C, rRed and rNIR decreased by 0.07

each, and SAVI remained nearly constant with an increase

of 0.02. These results demonstrated the substantial changes

in so, Ts, rRed, and rNIR due to soil moisture variations for

bare soil conditions.

For crops with GLAI >1.0, the sensitivity of the SAR so

to surface soil moisture content is substantially decreased

(Moran, Vidal, Troufleau, Inoue, & Mitchell, 1998). For the

two MAC alfalfa fields with GLAI� 4.0, the so was

completely insensitive to the difference in soil moisture in

the two fields, and instead, responded to the differences in

GLAI (Fig. 3). That is, the s� increased with decreasing

GLAI. According to Eq. (2), the transmittance through the

dense alfalfa canopy (t2) was low, and thus the SAR so was
dominated by the backscatter signal from the vegetation

(sv
o). This is discouraging for the use of SAR images for

irrigation scheduling purposes late in the growing season.

However, information about surface soil moisture condi-

Fig. 2. Measurements of SAR backscatter (s), surface temperature, NIR and

Red reflectance and SAVI in two sections of a fallow field with differing

soil moisture conditions. For purposes of graphic clarity, the SAR s� values
were divided by 10 and the Ts values were divided by 100.

Fig. 3. A comparison of the sensitivity of SAR backscatter to soil moisture

and vegetation density conditions for a fallow field and an alfalfa field. In

the figure, the bars are labeled with measurements of volumetric soil

moisture (SM) and GLAI.

Fig. 4. Extracts of SAR and optical data for the four study fields, illustrating

the differences in spectral response in SAR backscatter, NIR reflectance,

and radiometric surface temperature to variations in field tillage, vegetation

density, surface soil moisture, and plant litter.
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tions obtained early in the growing season is still useful for

monitoring irrigation efficacy, mapping precipitation events,

and determining soil texture.

5.2. DN indices for within-field change detection

We selected all MAC fields in the four 1995–1997

images that had a record of distinctive within-field differ-

ences in tillage, soil moisture, vegetation density, and plant

litter. Since results were similar for fields of similar surface

conditions, four fields were selected as examples for illus-

tration in this section. According to field notes and on-site

observations, Field 1 was fallow, but part of the field had

been laser leveled and part was still rough due to cultivation;

Field 2 was planted with alfalfa, but half of the field had

been recently harvested; Field 3 was also fallow, but part of

the field had been flood irrigated; and Field 4 had two

sections with different amounts of the surface covered with

dry plant litter.

All four fields (numbered 1–4 for reference herein) had a

notable increase in the SAR so (DNs
o� 0.2) from one end

of the field to the other (Figs. 4 and 5). The increase in DNs
o

in Field 1 was due to the increased scattering of the SAR

signal due to soil roughness. In Field 2, the increase in DNs
o

resulted from a decrease in the alfalfa crop density due to a

recent harvest, resulting in a larger t2 value in Eq. (2). In

Field 3, DNs
o increased due to the change in soil moisture

and the sensitivity of the SAR signal to the dielectric

constant of the surface. The dielectric constant of water is

about 80 (in the C-band wavelength) and that of dry

vegetation or soil is about 2–3. In Field 4, DNs
o apparently

increased due to an increase in dry crop litter cover from

15% to 75%.

The visual and quantitative assessment presented in Figs.

4 and 5 showed that the response of the optical data to the

three different field conditions corresponded well with the

theoretical hypotheses presented in Table 2. In Field 1, as the

soil roughness increased, DNrNIR and DNrRed decreased by

0.2 due to increased surface shadows, and DNTs and DNSAVI

remained near zero for the two roughnesses. In Field 2, as

the vegetation decreased due to harvest, DNTs increased by

about 0.2 due to the decrease in transpiration, DNrNIR
decreased by 0.5 and DNrRed increased by 0.4 due to the

decrease in leaf area and photosynthetic activity, causing a

decrease in DNSAVI of 0.62. In Field 3, as the soil moisture

increased, DNTs decreased by about 0.5 due to evaporative

cooling, DNrNIR and DNrRed decreased by approximately 0.1

due to water absorption, and DNSAVI remained near zero. In

Field 4, as the percentage of the surface covered with dry

plant litter increased, DNrNIR and DNrRed increased by

approximately 0.4 because the litter reflectance was higher

than the soil reflectance in both bands.

Based on data for fields not illustrated in Figs. 4 and 5,

we found that the optical data were also useful for discrim-

inating ‘‘mixes’’ of effects of roughness, vegetation, and soil

moisture. For example, in the SAR image acquired in

November 1995, two adjacent fields of alfalfa showed no

difference in SAR so (DNs
o� 0), despite large negative

values of DNTs and DNSAVI. Based on the optical response,

we postulated that one of the fields had been recently

harvested and had a low soil moisture content; the other

was near 100% vegetation cover and had been recently

irrigated. As a result, the high so associated with low crop

cover was offset by the low so associated with high soil

moisture content, and DNs
o� 0.

Overall, the DN indices worked well to discriminate the

causal relation between surface conditions and SAR so.
Though results for only four fields are illustrated here,

similar results for several more fields showed that this

method has potential for interpretation of SAR imagery

with coincident optical imagery. These results also illus-

trated the sensitivity of Landsat TM and ERS-2 SAR

imagery to differences in tillage, surface soil moisture,

vegetation density, and dry crop litter.

5.3. Retrieval of farm-scale soil roughness from SAR so

The approach for retrieval of soil surface roughness from

SAR so, described in the previous section, is based on the

premise that so is directly related to the soil surface roughness
of dry bare soils. Further, this relation can be qualitatively

assessed by the negative correlation between sN
o and rNIR,N

due to theoretically inverse sensitivities to surface roughness

conditions. All available data from the four TM/ERS-2 image

pairs were combined for this study; this data set included nine

MAC fields with three to eight borders in each field with

measurements on four dates, resulting in 260 points total.

Without any data normalization or filtering, there was no

discernable relation between so and rNIR (Fig. 6A). The first

step in the approachwas to normalize the values ofso,Ts, rRed,
rNIR, and SAVI, as described in the previous section. This

normalization allowed the measurements from the four dates

Fig. 5. The response of DN indices (Eqs. (8–12) to variations in field

roughness, vegetation density, and surface soil moisture. The five legend

captions refer to DNs
o, DNTs, DNrRed, DNrNIR, and DNSAVI, respectively.
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to be compared regardless of variations in solar zenith angle or

meteorological conditions at the time of image acquisition.

There appeared to be a weak negative relation between sN
o

and rNIR,N thatwas complicated by the interactions of surfaces

with differing soil moistures, roughnesses, and vegetation

densities (Fig. 6B).A subset of image pixels with SAVIN < 0.1

and Ts,N > 0.35 (assumed to be associated with dry, bare soils)

was extracted; this subset included 3–5 fields per each of the

four dates with three to eight borders in each field, resulting in

84 points total. For this subset, there was a statistically

significant, second-order, negative relation between sN
o and

rNIR,N (Fig. 6C).

The shape and scatter in the relation between sN
o and

rNIR,N for dry, bare soils was explained in several ways.

First, the premise of this investigation was that sN
o was

related to surface roughness for dry, bare soils. Since

measurements of surface roughness for each field were

not available, sN
o was compared with rNIR,N based on the

assumption that rNIR,N was equally sensitive to surface

roughness. This may not be a robust assumption because:

1) the ‘‘roughness’’ measured by sN
o is based on the

geometry of the radar beam and the surface (where a field of

east/west oriented furrows would not have the same appar-

ent roughness as a field with north/south furrows), whereas

the roughness measured by rNIR,N is based on the geometry

of the solar beam and the surface;

2) the curvilinear relation between sN
o and rNIR,N sug-

gests that the values of rNIR,N reach a threshold, despite

apparent further increases in roughness measured by sN
o; and

3) rNIR,N is influenced not only by surface roughness but

also by the soil composition, resulting in variations in rNIR,N
that are independent of roughness.

Another source of scatter was likely due to changes in

field conditions over the two- to three-day period between

optical and SAR image acquisitions for each of the four

image pairs (Table 3). Furthermore, with this filtering

approach, there were no adjustments made for the unknown

variations in plant litter among the targets. Finally, the

thermal data used to filter the data for soil moisture

condition is only sensitive to the top 1 mm of the soil,

whereas SAR measurements can penetrate the surface to

measure soil moisture in the top 1–5 cm, depending upon

soil moisture condition. Though this investigation resulted

in a significant relation between sN
o and rNIR,N, additional

validation experiments are warranted.

6. Concluding remarks

The objective of this study was to investigate the utility

of SAR images for farm management applications. These

results showed that the SAR so was sensitive to differences

in field roughness (related to tillage), vegetation density,

surface soil moisture, and dry plant litter. Furthermore, we

found that optical imagery obtained coincident with SAR

imagery allowed a better understanding of the interactions

of the SAR signal with soil and plant surfaces. Since it is

oftentimes difficult to interpret a single-band SAR image

over a diverse agricultural landscape, a coincident optical

image provided surface information necessary to investigate

SAR suitability for agricultural applications. An approach

for normalization of optical and SAR data (converting

values to a scale of 0 to 1) was proposed to allow

comparison of optical and SAR spectral measurements over

time and space with common units.

This study also demonstrated that combining optical

and SAR images could allow analyses of SAR data that

would not otherwise be possible with the SAR imagery

alone. As an example of this concept, optical data were

used to filter the SAR images to include only dry, bare soil

fields to investigate the sensitivity of SAR so to soil

surface roughness. The results were evaluated qualitatively

by comparison of SAR so and NIR r (both theoretically

Fig. 6. Relations between (A) SAR backscatter and NIR reflectance and

(B) normalized SAR backscatter and normalized NIR reflectance for all

MAC fields on four dates. Relation between (C) normalized SAR

backscatter and normalized NIR reflectance for dry, bare soil fields only.
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sensitive to surface roughness) for a variety of agricultural

fields of different roughnesses. A significant negative

correlation between normalized so and rNIR values pro-

vided support for the hypothesis that so was useful in

monitoring regional surface roughness conditions related to

agricultural tillage, subsidence, and erosion. Such optical/

SAR investigations help to identify the most promising

approaches for application of SAR measurements for

monitoring agricultural conditions. Recognizing the limi-

tations of optical remote sensing data due to cloud inter-

ference and atmospheric attenuation, the findings of this

study encourage further studies of SAR imagery for crop

and soil assessment.
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